Title : Homoclinic solutions in \mathbb{R}^2 for singular hamiltonian systems with weak force potentials

 $\underline{\mathbf{Abstract}}$: We study the existence of homoclinic solutions for a class of singular hamiltonian systems

$$\ddot{q}(t) + V'(q) = 0, \ t \in \mathbb{R},\tag{HS}$$

where $q : \mathbb{R} \longrightarrow \mathbb{R}^2$ and $V \in C^2(\mathbb{R}^2 \setminus \{e\}, \mathbb{R})$ is a potential with a singularity at a point $e \in \mathbb{R}^2 \setminus \{0\}$. We consider V which behaves like $-\frac{1}{|q-e|^{\alpha}}$ as $q \to e$ with $\alpha \in]1, 2[$.

Under the assumption 0 is a strict global maximum for V, we establish the existence of homoclinic solution emanating from 0, i.e. a solution q of (HS) such that

 $q \neq 0$ and $|q(t)| + |\dot{q}(t)| \longrightarrow 0$ as $t \to \pm \infty$.